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One of the main features of astrophysical shocks is their ability to accelerate particles to extremely
high energies. The leading acceleration mechanism, the diffusive shock acceleration, is reviewed. It
is demonstrated that its efficiency critically depends on the injection of thermal plasma into
acceleration which takes place at the subshock of the collisionless shock structure that, in turn, can
be significantly smoothed by energetic particles. Furthermore, their inhomogeneous distribution
provides free energy for magnetohydrodynamic (MHD) turbulence regulating the subshock strength
and injection rate. Moreover, the MHD turbulence confines particles to the shock front controlling
their maximum energy and bootstrapping acceleration. Therefore, the study of the MHD turbulence
in a compressive plasma flow near a shock is a key to the understanding of the entire process. The
calculation of the injection rate became part of the collisionless shock theory. It is argued that the
further progress in diffusive shock acceleration theory is impossible without a significant advance in

these two areas of plasma physics. © 2001 American Institute of Physics.

[DOLI: 10.1063/1.1345507]

I. INTRODUCTION

Over the last few years, new observations and missions,
e.g., the Energetic Gamma-ray Experiment Telescope
(EGRET),' Chandra .} and TeV-astronomy 2 have revolution-
ized the measurement of radiation from a variety of objects
in the Universe. In most cases the primary source of the
radiation is believed to be accelerated charged particles, of-
ten of remarkably high energies, such as 10?eV or even
higher,4 usually referred to as the ultra-high-energy cosmic
rays (UHECR). The accelerated particles themselves (we
will also use the term cosmic rays, CRs) are in many cases
generated by shock waves (shocks). Note that the latter are
the major events where the huge energy of stars, supernovas
(SN) or black holes, is released in bulk gas motions and
ultimately dissipated. The most successful particle accelera-
tion mechanism is, perhaps, the diffusive shock acceleration
(DSA),>® which is a variant of the original Fermi idea
(1949), also known as the first-order Fermi acceleration pro-
cess. According to this mechanism particles gain energy by
bouncing off hydromagnetic disturbances frozen into the
converging upstream and downstream flow regions near a
shock. Clearly, the understanding of this mechanism is criti-
cal for radiation models, since the primary particle spectrum
is one of their most important ‘‘input’’ characteristics. The
success of this mechanism has been due to the following
appealing features:

(1) reproduction of the power-law energy spectra with an
index remarkably similar to that inferred from the obser-
vations of the galactic cosmic rays (CRs),>%
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(2) convincing, direct observational evidence of its opera-
tion at interplanetary shocks and the earth bow shock,”™
and

(3) the absence of any obvious intrinsic limitation to the
maximum particle energy achievable by this process.

Often, however, this mechanism is applied in its simplified
version, the so-called test particle (TP) or linear approxima-
tion (that neglects the backreaction of accelerated particles
on the shock structure and produces a simple E~ 2 particle
energy distribution). Although some more realistic, nonlinear
theories do exist, they suffer from parametrization of particle
transport coefficients, such as the pitch-angle scattering, spa-
tial diffusivity, and plasma heating.

Also, it should be emphasized that the statement (2)
above is only a prima facie evidence for the responsibility of
this mechanism for galactic CRs, alluded to in (1). Despite
similarity between physical parameters,’ the lifetimes and
extensions of shocks in these two environments are vastly
different (up to a factor ~10'%). This requires different ap-
proximations for these shocks. Namely, the treatment of
large astrophysical shocks, such as Supernova remnant
(SNR) shells, shocks in the lobes of radio galaxies, or even
larger shocks in clusters of galaxies, must include the back
reaction of accelerated particles on the shock structure, and
thus be intrinsically nonlinear. This, in turn, necessitates the
self-consistent treatment of the above-mentioned anomalous
transport phenomena.

From the perspective of the widely accepted SNR shock
hypothesis of the origin of galactic CRs, perhaps, the most
critical impact of this treatment would be on the statement
(3) above. It implies that the maximum energy is limited
only by the time available for acceleration and by the size of
accelerating object (roughly not to be exceeded by the diffu-
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sive escape length for particles, which grows with energy).
This is becoming a ‘‘hot’’ issue in view of the lack of evi-
dence for TeV-protons in SNR shocks (despite the signature
of GeV-protons, EGRET), which might indicate that the par-
ticle spectrum either cuts off somewhere between GeV and
TeV energies (i.e., in an energy range currently uncovered by
any instrument) or probably significantly steepens there. We
must await observations from the Gamma-ray Large Area
Space Telescope (GLAST) and the next generation of the
imaging atmospheric Cherenkov telescopes that are currently
being built® to see where and how the spectrum disappears or
changes. To understand how this may happen, one needs to
consider all the crucial requirements for this mechanism,
which are as follows:

(i) the ability of some fraction of thermal particles down-
stream to make the first step to acceleration, i.e., to
return upstream (injection problem);

(ii))  good confinement of accelerated particles near the
shock front (to continue energy gain); and

(iii)  the ability of the shock to withstand the pressure of
accelerated particles (the shock smoothing, or shock
robustness problem).

These requirements are also associated with the main diffi-
culties of the theory and are, in fact, strongly related. We
consider them briefly, in order.

A. Injection problem

Injection is the process of initial particle energization.
Within the widely accepted ‘‘thermal leakage’” scenario of
injection, the way protons enter the shock acceleration pro-
cess is physically the same as when they are accelerated
afterwards (see, e.g., Ref. 10). After thermalization down-
stream, a certain fraction of particles will catch up with the
shock. Their further leakage upstream generates Alfvén
waves via the cyclotron resonance kpu=eB/c, where u is
the cosine of the proton pitch angle, and p is the particle
momentum. These waves do two things. First, they self-
regulate the thermal particle leakage (injection) by trapping
particles downstream when their leakage becomes too strong
and, therefore, the wave amplitude too large as well.'" Sec-
ond, the large amplitude waves scatter already accelerating
particles in pitch angle, thus ensuring their diffusive confine-
ment near the shock.

According to the above resonance condition, waves ex-
cited by protons (with kp,~1) are too long to scatter elec-
trons, so that they interact with them adiabatically (kp,
<1). Therefore, electrons need a separate injection scenario.
One suggestion is that they might be injected via scattering
on self-generated whistler waves.'”> According to another
mechanism suggested in Ref. 13, electrons are extracted di-
rectly from the thermal pool near the shock front via their
interaction with proton-generated lower-hybrid waves and
the electrostatic barrier formed there due to this interaction.

It should be noted that when the both species become
relativistic and, if the synchrotron cooling time is longer than
the acceleration time, the electron spectrum should be iden-
tical to that of the protons. However, it is electrons for which
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we have convincing direct evidence of Fermi acceleration in
SNR shells. There are well-documented measurements of
nonthermal electron emission in radio, x rays and possibly
also in vy rays, presented, e.g., in Refs. 14-16, respectively.
Although electrons play perhaps a dynamically unimportant
role in the shock structure, they should trace the dynamically
important proton spectra.

B. Particle confinement near the shock

As in the injection phase, further particle confinement
near the shock is supported by self-generated Alfvén wave
turbulence, since the energetic particle distribution ahead of
the shock is ion-cyclotron unstable (see, €.g., Ref. 8). Due to
rapid pitch-angle scattering on these waves, particles cross
the shock repeatedly, thus gaining energy. Clearly, the scat-
tering frequency (turbulence level) sets up the acceleration
rate. Note that the existing background magnetohydrody-
namic (MHD) turbulence in the interstellar medium (ISM)
would support only very slow acceleration. A long-standing
problem is that the wave generation process is likely to be so
robust that wave amplitude may far exceed the level admis-
sible by the quasi-linear theory. It is usually expected that the
turbulence saturates at a level 6B~ B . Thus, particle scat-
tering must occur via strongly nonlinear wave—wave and
wave—particle interactions, so that the conventional quasi-
linear description should be replaced by a nonperturbative
approach.

MHD simulations have significantly advanced recently
(see, e.g., Ref. 17 and references therein) but they would not
suffice alone to self-consistently describe the wave genera-
tion by turbulently confined particles. The main difficulty is,
as it will be seen in the sequel, the enormous extension of
particle and wave spectra. It seems desirable to combine
simulations in restricted but critical parts of the phase space
(as the short-wave, low-energy part that controls the injec-
tion and the long-wave, high-energy part where particle
losses occur) with an analytical approach in extended but
tractable parts of the phase space where particle and wave
spectra and even the flow profile exhibit relatively simple,
scale invariant behavior.'®

It should be evident that a purely numerical approach
would encounter serious difficulties if applied to the shock
acceleration of UHECRSs. Indeed, even if we had a numerical
solution of the problem of CR acceleration in SNR shocks,
i.e., up to energies ~ 10 eV, we would need to extend its
dynamical range by a factor of ~10°. Since the integration
domain in configuation space is typically proportional to the
maximum energy, this would mean ~ 10'° times larger phase
space. It seems natural to use this large size of the phase
space instead of letting a computer process decade after de-
cade of it with basically the same physics. The analytic ap-
proach that we introduce in Sec. II B utilizes the correspond-
ing small parameters and, therefore, appears particularly
suitable to the problem of acceleration of UHECRs.

C. Shock robustness

Due to the secular growth of the pressure of accelerated
particles, the linear solution becomes invalid for shocks of
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FIG. 1. Schematic representation of nonlinearly accelerating shock. Flow
profile with a gradual deceleration upstream is also shown at the top.

sufficient life time, scale L, and magnetic field B [the most
critical parameter is BL since the maximum particle energy
scales as E ..~ (u/c)eBL, provided that enough time is avail-
able for acceleration, as discussed, e.g., in Ref. 6]. The main
nonlinear effect is due to the back reaction of energetic par-
ticles on the flow, which reduces the velocity jump at the
flow discontinuity (subshock) through the deceleration and
heating of the plasma in front of it (i.e., in the so-called CR
precursor) (Fig. 1). The total shock compression, however,
increases due to the decrease in the adiabatic index vy caused
by the presence of relativistic particles and, even more im-
portantly, by their escape from the system (akin to radiative
shocks). At the same time, the maintenance of a finite sub-
shock within the global shock structure (subshock itself, plus
CR precursor) is critical to the injection process and thus for
acceleration in general. A mathematical limitation of the TP
approximation can be obtained in terms of particle energy
and injection rate v, namely, v mesl,19 which states that
the pressure of accelerated particles must remain smaller
than the shock ram pressure. It is also clear from this condi-
tion that the above three issues are strongly coupled. Injec-
tion (v) and particle confinement (which sets E,,,) deter-
mine the shock structure and are, in turn, regulated by it. The
acceleration time scale 7, (or particle diffusivity «) and the
precursor turbulent heating rate are also implicitly involved
in this “‘feedback loop.”” There are indeed too many shock
variables to obtain reliable prediction by simply scanning the
parameter space. Therefore, they need to be calculated self-
consistently before the particle spectra can be calculated and
compared with the observations.

Il. NONLINEAR THEORIES

A typical nonlinearly accelerating shock is illustrated in
Fig. 1. The most ‘‘visible’” nonlinear effects are (1) the de-
celeration of the flow upstream (see the flow profile on the
top of Fig. 1) by the pressure of accelerated particles, (2)
subshock reduction, as a consequence (its strength ug/u,
may become small compared to the total compression
u;/u,), and (3) bending of the B-field due to the compres-
sion of its tangential component because of the frozen in
condition, uB,= const, while the normal component is con-
served due to div B=0.
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A. Two-fluid model

Initially, the back reaction of accelerated particles (CRs)
on the shock structure was studied within the two-fluid
model (TFM). This model treats CRs as a second fluid car-
rying the momentum and energy across the shock, but not
the mass. Complete solutions given in Refs. 20 and 21 in-
deed revealed a very strong back reaction of the CRs onto
the bulk plasma flow, leading to a bifurcation of the simple
linear solution into a strongly nonlinear (efficient) solution
with the acceleration efficiency approaching (in strong
shocks) 100% due to the nonlinearly enhanced shock com-
pression. This gives rise to a formally diverging (i.e., in re-
ality, strongly dependent on the maximum energy) CR pres-
sure, which makes the particle losses at the highest energies
as important dynamically as injection, and strongly related to
it through their feedback on the subshock strength. More-
over, these losses are controlled by the Alfvén turbulence
which, in turn, depends on the CR distribution in the shock
precursor and thus on the losses themselves. Unfortunately,
the TFM, being a hydrodynamic theory, cannot be closed in
such a way that these essentially kinetic effects are properly
represented.

B. Kinetic theory

The earlier kinetic theories also demonstrated that upon
accumulating enough CR energy, strong shocks develop into
the nonlinear regime. The minimal kinetic theory that cap-
tures bifurcations of the DSA can be formulated as follows.

We describe the distribution of high-energy particles
(CRs) by the so-called diffusion-convection equation (see,
e.g., Refs. 5 and 6). The gaseous discontinuity (the sub-
shock) is assumed to be located at x=0 and, for conve-
nience, we flip the x-coordinate in Fig. 1, so that the up-
stream side is x>0 half-space. Thus, the flow velocity in the
shock frame can be represented as V(x)= —u(x), where the
(positive) flow speed u(x) jumps from u,=u(0—) down-
stream to uy=u(0+)>u, across the subshock and then
gradually grows upstream up to u;=u(+*)=u,. In a
steady state the equation can be written as

af Pf 1du df

u——trp)oa=3 ¢ o’ (1)
where f(x,p) is the isotropic (in the local fluid frame) part of
the particle distribution. This is assumed to vanish far up-
stream (f—O0,x—o), while the only bounded solution
downstream is obviously f(x,p)=fy(p)=f(0,p). The most
plausible assumption about the cosmic ray diffusivity «(p)
is that of the Bohm type, i.e., k(p)=Kp?/\1 +pz (the par-
ticle momentum p is normalized to mc). In other words, «
scales as the gyroradius, k~r,(p). The reference diffusivity
K depends on the 8B/B level of the Alfvénic turbulence that
scatters the particles in pitch angle. The minimum value for
K would be K~mc?/eB if 5B~B. Note that the replace-
ment of this plain parametrization by a self-consistent solu-
tion for the spectrum of turbulence driven by an inhomoge-
neous distribution of accelerated particles is a challenge to
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plasma physics. The existing quasi-linear approaches clearly
fail in the efficient acceleration regime due to unacceptable
wave amplitudes.

The determination of u(x) in Eq. (1) requires three fur-
ther equations. The first one is the conservation of the mo-
mentum flux in the smooth part of the shock transition (x

>0, i.e., in the CR-precursor),
P.+pu’=pul, x>0, (2)

where P, is the pressure of the high-energy particles

4 1 ptd
Pc(x): 37Tmczfp Zz—‘rpl f(p,x) (3)
Po

It is assumed here that there are no particles with momenta
p>p, (they leave the shock vicinity because there are no
MHD waves with sufficiently long wave length A, since the
cyclotron resonance requires p~X\). The momentum region
0<p<p, cannot be described by Eq. (1) and the behavior of
f(p) at p~p, is described by the injection parameters p
and f(p,)."” The plasma density p(x) can be eliminated
from Eq. (2) by using the continuity equation pu=pu;.
Finally, the subshock strength r; can be expressed through
the Mach number M at x =

Ug y+1

"Tuy y—1T2RTIM @

where the precursor compression R=u;/uy, and vy is the
adiabatic index of the plasma.

The system of equations (1), (2), and (4) describes in a
self-consistent manner the particle spectrum and the flow
structure, although under parametrization of such critical
quantities as v and p . Our poor knowledge of the maximum
momentum p; is related to the prescribed form of particle
diffusivity «(p).

It is useful to reduce this system to one integral
equation.'” A key dependent variable is an integral transform
of the flow profile u(x) with a kernel suggested by an
asymptotic solution of the system (1) and (2), which has the
form

fx.p)=fo(p)exp

q
_ﬂq,},
where

\I’ZJ u(x")dx’
0

is the flow potential and the spectral index downstream
q(p)=—dInfy/dInp. The integral transform is as follows,

L[~ q(p)
U =—f expl — ——V |du(V), 5
n= p{ Sy ¥ 4 CD) 5)
and it is related to g(p) through the following formula
_ dan+ 3 3 ¢
9(p)= dlnp r,RU(p) = (©)

The physical meaning of the function U(p) is very simple. It
reflects the degree of shock modification. Namely, a function
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U(p) +u, is an effective flow velocity upstream as seen by a
particle with momentum p that diffusively escapes ahead of
the shock to a point x where the flow speed is u(x)=U(p)
+u,. Once U(p) is found, both the flow profile and the
particle distribution can be determined by inverting trans-
form (5) and integrating equation (6). Now, using the linear-
ity of Eq. (2) (pu=const), we derive the integral equation
for U by applying the transformation (5) to the x-derivative
of Eq. (2).° The result reads

U(t)=r5_1+L "] L +Lﬂ)}_l
Rry  Kpo Js, k(t")  k(1)q(1)
Ul(t 3 (¢ dt”
SR 0
where t=Inp and 5 ;=Inp, ;. Here the injection parameter
41 mc? 4
V=3 mpafo(l?o) ()

is related to R by means of the following equation:

f;l k(1) dt

3 (¢ dt’ ]!

Rrg fon(t’) ] . ©)
The equations (4), (7), and (9) form a closed system that can
be easily solved, e.g., numerically. Asymptotic analytic so-
lutions are also available.'® The physical quantities involved
are the far upstream Mach number M (which is given, exter-
nal parameter); internal parameters M, (the Mach number at
the subshock), the injection rate v, the particle maximum
momentum p ... =p;, and particle diffusivity «(p,x). These
internal parameters must be determined self-consistently, but
currently are parametrized or calculated using some simpli-
fying assumption. For example, assuming that there is no
turbulent heating in the shock precursor (which is doubt-
ful in such a turbulent environment), the parameter
My=M/R* D2 [see Eq. (4)].

v=Kpo(1—R™ ")

Ul(ty)
0 exp

lll. CRITICAL NATURE OF ACCELERATION PROCESS

The presence of bifurcation in this acceleration process
is best seen in variables R, v. The quantity R— 1 is a measure
of shock modification produced by CRs, in fact (R—1)/R
=P.(0)/p,;u? [Eq. (2)] and may be regarded as an order
parameter. The injection rate v characterizes the CR density
at the shock front and can be tentatively treated as a control
parameter. It is convenient to plot the function v(R) instead
of R(v) [using Egs. (9) and (4)] (Fig. 2).

In fact, the injection rate v at the subshock should be
calculated given r (R) with the self-consistent determination
of the flow compression R on the basis of the R(v) depen-
dence obtained. However, in view of a very strong, even
nonunique dependence R(v), this solution can be physically
meaningful only in regimes far from criticality, i.e., when
R~1 (test particle regime) or R>1 (efficient acceleration).
There are, however, self-regulating processes that should
drive the system fowards the critical region [where R(v)
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FIG. 2. Response of shock structure (bifurcation diagram) to the injection of
thermal particles at the rate v. The strength of the response is characterized
by the precompression of the flow in the CR shock precursor R=u, /u, (see
Fig. 1). The flow Mach number M=150; different curves correspond to
different values of maximum momentum denoted here as p; and normalized
to mc. For each given v and p,,, one or three solutions exist.

dependence is very sharp].'®?* First, if v is subcritical it will
inevitably become supercritical when p; grows in course of
acceleration. Once this has happened, however, the strong
subshock reduction [Eq. (4)] will reduce v, as well, and drive
the system back to the critical regime (Fig. 3).

The maximum momentum p; is subject to self-
regulation, as well. Indeed, when R> 1, the generation and
propagation of Alfvén waves is characterized by strong in-
clination of the characteristics of the wave transport equation
towards larger wave numbers k on the k—x plane due to
wave compression. Thus, considering particles with p<p,
inside the precursor, one sees that they are in resonance with
waves that must have been excited by particles with p>p,
further upstream, but there are no particles with p>p,.
Therefore, the required waves can be excited only locally by
the same particles with p=<p,, which substantially dimin-
ishes the amplitude of waves that are in resonance with par-

Injection v

Subshock smearing
V decreases

0 1 R R, R

FIG. 3. Bifurcation diagram corresponding to the set of response curves
shown in Fig. 2. Since v and p,,, are in reality dynamic rather than control
parameters, the response curve moves towards the bifurcation curve drawn
with the heavy line. The resulting state of the system corresponds to the
critical (inflection) point on this curve, which can be described as a “‘self-
organized critical”” (SOC) state.
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FIG. 4. Bifurcation diagrams as in Fig. 2 but for different heating rates a
(see text), for Mach number M=150 and the cutoff momentum p ,,,=10°.

ticles from the interval p; /R<p<p,. [The left inequality
arises from the resonance condition kcp~eB/mc and the
frequency conservation along the characteristics ku(x)
= const.] This will worsen the confinement of these particles
to the shock front. The quantitative study of this process is
another challenge to the theory of plasma turbulence. What
can be inferred from Fig. 2 now is that the decrease of p;
straightens out and raises the curve v(R), so that it returns to
the monotonic behavior. However, once the actual injection
becomes subcritical (and thus R—1), then p; will grow
again restoring the two extrema on the curve v(R).

Also the turbulent precursor heating straightens up the
bifurcation diagram and returns it to the critical state. We
illustrate this in Fig. 4 for different heating efficiencies «,
introduced phenomenologically through the decrease in the
flow Mach number across the CR precursor:

o
Mo =M 2R+ (R = 1)p s (10)

Here the first term is due to the familiar adiabatic compres-
sion, while the second describes the turbulent heating, as-
sumed to be proportional to the CR pressure contrast R
—1 (source of the free energy for turbulence), as well as to
the precursor length «p . . The plots in Figs. 2 and 4 dem-
onstrate that parametrization approaches in which the inter-
nal parameters (like @ and p,, in many simulations) are
treated as given may be useful only when (and if) these pa-
rameters are well outside the critical region, which is marked
by very sharp or even nonunique parameter dependence. For
example, as seen from Fig. 4, if a (which is essentially un-
known) lies within the interval 10" 8-1077, then there are no
means to calculate the flow structure (R), and thus the par-
ticle spectrum with a reasonable accuracy. To treat the injec-
tion rate in the critical region as a ‘‘control’’ parameter is
equally useless, Figs. 2 and 4.

It appears to be more productive to assume a marginal
state in which the maximum and the minimum of v(R)
merge, at least in a sense of an averaged (in time and space)
process. This means that »'(R)=v"(R)=0 at some R
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=R.. These two equations and the dependence v(R) itself
not only determine R, and v.=wv(R,_), but also provide an
additional relation that involves other parameters of the
problem which clearly enter the function v(R). These are the
Mach number M, the heating rate ¢, and the maximum mo-
mentum p,...=p; . For example, given M and a we can eas-
ily calculate p .« 22 These results show that, at least in
shocks with high Mach numbers and no significant turbulent
heating, the nonlinear effects may significantly limit the
maximum energy achievable by this acceleration mecha-
nism. Before any relevance of this result to, e.g., the lack of
observational evidence of TeV protons in SNR can be seri-
ously debated, a number of difficult issues must be ad-
dressed, which we discuss briefly in the next section.

IV. DISCUSSION

Instead of relying on parametrization and guessing about
the possible values of relevant parameters, it was suggested
that, due to the self-regulation, the system should evolve
precisely into the critical point within given parameter
space.”> A comprehensive evaluation of this suggestion and
the study of self-regulation mechanisms poses a serious chal-
lenge to plasma physics. Note, however, that the critical self-
organization approach was proven very useful in describing
transport phenomena in laboratory plasmas, when the turbu-
lence is generated by transport driving gradients, i.e., the
pressure or density gradients, e.g., Ref. 23. The most impor-
tant current issue is the construction of adequate links be-
tween the internal parameters (and so the Alfvénic turbu-
lence), and their dependence upon the external parameters.
This is an interdisciplinary problem in high-energy astro-
physics and nonlinear plasma physics. It combines hydrody-
namics, particle kinetics with a strong emphasis on the
theory of dynamical chaos and ergodicity (injection),
Alfvénic turbulence, collisionless nonlinear plasma phenom-
ena, and, in particular, the theory of collisionless shocks.

Currently not all the aspects of this problem are well
understood. We believe that we understand how the accel-
eration operates in the test particle (linear) regime, and have
an analytic description of nonlinearly modified shocks in-
cluding particle spectra, although under a prescribed Bohm-
type particle diffusion. Injection can be calculated currently
only for a relatively strong subshock, while we need it for
varying shock parameters of dynamically evolving CR
shocks. Turbulence dynamics, associated plasma heating,
and the turbulent transport of CRs are understood to even
lesser extent. A systematic determination of parameters in-
volved should allow the self-consistent calculation of particle
spectra.
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Specifically, this requires detailed understanding of sev-
eral physical phenomena in a shock environment, which in-
clude

(1) generation of waves by energetic protons, wave trans-
port, and spectral evolution;

(2) turbulent transport of protons, in space and momentum,
injection;

(3) electron injection triggered by proton generated turbu-
lence; and

(4) heating by Alfvénic and (magneto-) acoustic turbulence,
which controls the global shock structure

The resolution of these issues will lead to further progress in
our understanding of particle acceleration and associated
emission.
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